
A Hybrid Approach to Reverse Engineering on
Combinational Circuits

Wuqian Tang 1, Yi-Ting Li1, Kai-Po Hsu1, Kuan-Ling Chou1, You-Cheng Lin1, Chia-Feng Chien1, Tzu-Li Hsu1,
Yung-Chih Chen2, Ting-Chi Wang1, Shih-Chieh Chang1, TingTing Hwang1, and Chun-Yao Wang1

1National Tsing Hua University, Taiwan, ROC
2National Taiwan University of Science and Technology, Taiwan, R.O.C.

Abstract—Reverse engineering is a process that converts low-
level description to high-level one. In this paper, we propose
a hybrid approach consisting of structural analysis and black-
box testing to reverse engineering on combinational circuits. Our
approach is able to convert combinational circuits from gate-level
netlist to Register-Transfer Level (RT-level) design accurately
and efficiently. We developed our approach and participated in
Problem A of the 2022 CAD Contest @ ICCAD. The revised
version of our program successfully converted most cases and
achieved higher scores than the 1st place team in the contest.

I. INTRODUCTION

With the advances of process technology, modern designs
can incorporate billions of logic gates. However, as the design
complexity grows, detecting hidden trojans [11] or backdoors
[12] becomes increasingly challenging. Given highly complex
gate-level netlists, many methods have been proposed to
address the issues of detecting trojans and backdoors [5],
[6], [13]. This area of applications can be based on reverse
engineering [5]. If combinational circuits can be converted
from gate-level to RT-level, designers would easily understand
the content of circuits. Thus, there is a pressing need to extract
higher level behavior of a circuit from the gate-level. To
address the problem of reverse engineering on combinational
circuits, many methods have been proposed [7]–[10].

However, there is a noticeable shortcoming in the previous
research on reverse engineering of combinational circuits.
Traditional methods often rely on structural analysis, such
as XOR-Tree [1]. While these methods can effectively iden-
tify basic arithmetic operators, they fail when dealing with
complex arithmetic operations, or those involving bit shifting
or exponent. In this paper, we propose a hybrid approach
that combines structural analysis and black-box testing for
efficient combinational circuit reverse engineering. It aims to
convert a combinational circuit from gate-level netlist to RT-
level description in Verilog format [4]. As compared to the
performances of the 1st place team in Problem A of the 2022
CAD Contest @ ICCAD [2], our approach achieves higher
scores than their result in the contest.

This work is supported in part by the National Science and Technology
Council (Taiwan) under MOST 109-2221-E-007-082-MY2, MOST 111-2221-
E-007-121, MOST 111-2221-E-011-137-MY3, NSTC 112-2218-E-007-014,
NSTC 112-2221-E-007-106-MY2, NSTC 112-2221-E-007-108, and NSTC
112-2425-H-007-002.

II. THE PROPOSED APPROACH

Our approach begins by extracting Coefficients-
Undetermined Conditional Operatoins (CUCOs) and
Coefficients-Undetermined Arithmetic Operations (CUAOs)
from the gate-level netlist using structural analysis. Following
this, we employ black-box testing to conduct random
simulation on the circuit. Lastly, we utilize the Gaussian
elimination technique to resolve undetermined coefficients in
the CUCOs and CUAOs.

A. Structural Analysis
1) Extracting CUAOs: For each output vector, we extract

a corresponding CUAO. For example, assume that we have
an output vector of length 4, denoted as out[3:0]. We may
determine a set of input vectors, in1, in2, in3, in4, etc, that
constitute the functional support variables for each wire in out.
The example can be illustrated as:

out = f(in1, in2, in3, in4, ...) (1)

where the input vectors determine the value of out, and f
denotes an arithmetic operation to be extracted.

To extract the CUAO, we reorganize each wire in the
out into the Exclusive-Sum Of Products (XSOP) form. For
instance, suppose the XSOP form of out[0] is:

out[0] = (in1[0] ∧ in2[0]) ⊕ (in3[0] ∧ in4[0]) (2)

where ∧ is the bit-and operator and ⊕ is the bit-xor operator.
We can deduce the multiplication terms by collecting the
product terms in EQ (2). The corresponding CUAO is:

f = Coe1 × in1 × in2 + Coe2 × in3 × in4 + Const (3)

By performing the XSOP extraction operation from Least
Significant Bit (LSB) to Most Significant Bit (MSB) of out,
more terms can be added into f .

2) Extracting CUCOs: For arithmetic operations consti-
tuted of addition, subtraction, and multiplication, the lower
bit can influence the higher bit, but the converse is not held.
For instance, consider a 4-bit adder defined as sum[3:0] =
a[3:0]+ b[3:0], sum[0] is determined by a[0] and b[0]. Due to
carry propagation, sum[1] is determined by a[0], b[0], a[1], and
b[1]. The subsequent bits follow the same rule. Assume that
we possess a 4-bit input vector c, and the arithmetic operations
of this sum are encompassed in the condition if(c > 0), then
every bit of sum’s functional support variables will include
c[0] to c[3].

2024 Design, Automation & Test in Europe Conference (DATE 2024)	

 979-8-3503-4859-0/DATE24/© 2024 EDAA

	

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 22,2024 at 04:54:53 UTC from IEEE Xplore. Restrictions apply.

By employing this principle, we can identify input vectors
that may appear in a conditional operation. Here, we explore
combinations of input vectors in the conditional operation. For
instance, if we know that both c1 and c2 could be present
within a conditional operation, an initial attempt would be:
if (Coe1 × c1 + Coe2 × c2 =⃝ Const), where =⃝ denotes
any comparison operator. When the subsequent steps do not
produce a valid RT-level design, our method will be adapted to
explore more intricate combinations such as if (Coe1 × c1 ×
c1 +Coe2 × c1 × c2 +Coe3 × c2 × c2 =⃝ Const), and so on.
This iterative procedure continues until the accurate RT-level
design is discovered.

B. Black-box Testing
For any CUAO and CUCO, it can be represented as:

out = Const+Coe1×P1+Coe2×P2+Coe3×P3+. . . (4)

Each Pi denotes a term constructed from input vectors and
non-additive arithmetic operations. By assigning a variety of
random patterns to the circuit, we have a set of output vectors
with corresponding values. This process results in a system
of linear equations. Subsequently, we can employ Gaussian
elimination to determine all values of the undetermined coef-
ficients.

III. EXPERIMENTAL RESULTS

TABLE I: The Results of Our Approach.

Cases Costori
CostRTL Reduc- CPU (s)
Ours 1st tion (%) Ours 1st ↓ (%)

Test01 65 2 2 96.9 0.012 0.137 91.2
Test02 81 2 2 97.5 0.009 0.126 92.9
Test03 453 3 3 99.3 0.015 0.141 89.4
Test04 8196 6 6 99.9 0.372 0.473 21.4
Test05 1724 6 6 99.7 0.056 0.212 73.6
Test06 5310 3 3 99.9 0.151 0.431 65.0
Test07 2961 9 9 99.7 0.168 0.389 56.8
Test08 3302 4 4 99.9 0.112 0.227 50.7
Test09 7988 3 3 100.0 0.208 0.537 61.3
Test10 3029 4 4 99.8 0.119 0.249 52.2
Test11 2003 2 2 99.9 0.026 0.238 89.1
Test12 13290 23 23 99.8 0.920 1.047 12.1
Test13 1067 18 18 98.3 0.244 0.728 66.5
Test14 107 2 2 98.1 0.051 0.122 58.2
Test15 4231 12 12 99.7 0.692 0.782 11.5
Test16 999 5 6 99.4 0.227 0.232 2.2
Test17 1365 7 7 99.5 0.243 1.479 83.6
Test18 174 12 12 93.1 0.115 0.138 16.7
Test19 2379 91 91 96.2 0.228 0.234 2.6
Test20 5104 18 18 99.6 0.594 1.760 66.3
Test21 2074 59 93 97.2 0.732 0.890 17.8
Test29 842 53 - 93.7 5.973 - -
Test30 16525 24 24 99.9 0.915 1.600 42.8
Avg. - - - - - - 51.1

We implemented the proposed approach in C++ and con-
ducted experiments on a Linux platform (Ubuntu 20.04.03
LTS) with an AMD EPYC 7282 CPU (2.8 GHz) and 256 GB
of RAM. The benchmarks for the experiments were sourced
from Problem A of the 2022 CAD Contest @ ICCAD [3].
Each benchmark is a gate-level netlist synthesized from RT-
level design composed of operators like addition, subtraction,
multiplication, conditioning, and/or operators, bit selection,
and concatenation. The experimental results are summarized in
Table I, where we also compare our result with the one of 1st

place team of the contest. The columns Costori and CostRTL

represent the Cost [3] of the original gate-level netlist and
that of the RT-level design converted using our approach,
respectively. In general, a smaller Cost indicates a higher
level of description of the derived RT-level design, and thus
higher readability. The column Reduction(%) represents the
reduction ratio of CostRTL relative to Costori. The CPU(s)
column measured the runtime of the program execution. We
have listed all the benchmarks that we successfully converted.
The cases not successfully converted to RT-level design are
denoted by “−”. For benchmarks Test22 to Test28, both our
approach and the 1st place team failed to convert to RT-level
design. As a result, these benchmarks are omitted from the
table. As compared with the 1st place team, the reduction
ratio of our method is either superior to or equivalent to that
of the 1st place team across all benchmarks. Moreover, our
approach, on average, required only 49% of the CPU time
compared to the 1st place team.

REFERENCES
[1] M. Barbareschi, S. Barone, N. Mazzocca, and A. Moriconi,

“A catalog-based aig-rewriting approach to the design of
approximate components,” IEEE Transactions on Emerging
Topics in Computing, 2022.

[2] Y.-G. Chen, C.-Y. Wang, T.-W. Huang, and T. Sato, “Overview
of 2022 cad contest at iccad,” in Proc. of the IEEE/ACM
International Conference on Computer-Aided Design, 2022,
pp. 1–3.

[3] C.-H. Chou, C.-J. Hsu, C.-A. Wu, and K.-H. Tu, “2022
cad contest problem a: Learning arithmetic operations from
gate-level circuit,” in Proc. of the IEEE/ACM International
Conference on Computer-Aided Design, 2022, pp. 1–4.

[4] P. M. Donald Thomas, The Verilog® Hardware Description
Language. Springer New York, NY, 2002.

[5] M. Fyrbiak, S. Wallat, P. Swierczynski, M. Hoffmann, S.
Hoppach, M. Wilhelm, T. Weidlich, R. Tessier, and C. Paar,
“Hal—the missing piece of the puzzle for hardware reverse
engineering, trojan detection and insertion,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 16, no. 3,
pp. 498–510, 2018.

[6] Z. Huang, Q. Wang, Y. Chen, and X. Jiang, “A survey
on machine learning against hardware trojan attacks: Recent
advances and challenges,” IEEE Access, vol. 8, pp. 10 796–
10 826, 2020.

[7] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S.
Malik, N. Shankar, and S. A. Seshia, “Wordrev: Finding word-
level structures in a sea of bit-level gates,” in Proc. of the IEEE
International Symposium on Hardware-Oriented Security and
Trust, 2013, pp. 67–74.

[8] W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering
circuits using behavioral pattern mining,” in Proc. of the IEEE
International Symposium on Hardware-Oriented Security and
Trust, 2012, pp. 83–88.

[9] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for
high-level functionality reconstruction,” in Proc. of the IEEE
Asia and South Pacific Design Automation Conference, 2016,
pp. 655–660.

[10] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascón, W. Y. Tan,
A. Tiwari, N. Shankar, S. A. Seshia, and S. Malik, “Reverse
engineering digital circuits using structural and functional
analyses,” IEEE Transactions on Emerging Topics in Com-
puting, vol. 2, no. 1, pp. 63–80, 2013.

[11] M. Tehranipoor and F. Koushanfar, “A survey of hardware
trojan taxonomy and detection,” IEEE Design & Test of
Computers, vol. 27, no. 1, pp. 10–25, 2010.

[12] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting mali-
cious inclusions in secure hardware: Challenges and solutions,”
in Proc. of the IEEE International Workshop on Hardware-
Oriented Security and Trust, 2008, pp. 15–19.

[13] Y. Yang, J. Ye, Y. Cao, J. Zhang, X. Li, H. Li, and Y. Hu,
“Survey: Hardware trojan detection for netlist,” in Proc. of
the IEEE Asian Test Symposium, 2020, pp. 1–6.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 22,2024 at 04:54:53 UTC from IEEE Xplore. Restrictions apply.

